
 SISCI API INTERFACE

Replace in

Title/Slide Master

with Company

Logo or delete

Roy Nordstrøm

Pci-support@dolphinics.com

Dolphin Interconnect Solutions

Version 2, IX

Porting to SISCI

• The SISCI API provides a powerful interface to migrate

embedded applications to a Dolphin Express network.

• SISCI is fully supported on Dolphin IX, DX and SCI networks

unless explicitly noted.

• Dolphin engineers have long time experience in porting

applications to the SISCI API. It is strongly recommended to

perform a design review with a Dolphin Engineer before starting

initial coding.

SISCI API - Presentation overview

• SISCI API functions

• PIO Model

• DMA Model

• Remote Interrupt

• Lock Operations

• Privileged Operations

• Error Checking

• Callbacks

Application

SISCI API

IRM Driver

SISCI Driver

SISCI API

SISCI API

• SISCI –

•Software Infrastructure for Shared-Memory Cluster

Interconnects

• Application Programming Interface (API)

•Developed in a European research project

• Shared Memory Programming Model

• User space access to basic NTB and Adapter properties

• High Bandwidth

• Low Latency

• Memory Mapped Remote Access

• DMA Transfer

• Interrupts

• Callbacks

SISCI API Features

• Access to High Performance HW

• Highly Portable

• Cross Platform / Cross Operating system interoperable

 Big endian and little endian machines can be mixed

• User data not converted

• Simplified Cluster Programming

• Flexible

• Reliable Data transfers

• Host bridge / Adapter Optimization in libraries

SISCI API - Handles

SISCI API – Handles – Basic SISCI Types

• Working with remote shared memory, DMA transfer and remote

interrupt, requires the use of logical entities like devices, memory

segments and DMA queues.

• Each of these entities is characterized by a set of properties that

should be managed as an unique object in order to avoid

inconsistencies.

• To hide the details of the internal representation and management

of such properties to an API user, a number of handles /

descriptors have been defined and made opaque

SISCI API - Handles

• sci_desc_t

 It represents an SISCI virtual device, that is a communication

channel with the driver. It is initialized by calling the function

SCIOpen.

• sci_local_segment

 It represent a local memory segment and it is initialized when the

segment is allocated by calling the function SCICreateSegment()

• sci_remote_segment

 It represent a segment residing on a remote node. It is initialized by

calling either the function SCIConnectSegment() or

SCIConnectSCISpace()

SISCI API - Handles

• sci_map_t

 It represents a memory segment mapped in the process address

space. It is initialized by calling either the function

SCIMapRemoteSegment or the function SCIMapLocalSegment.

• sci_sequence_t

 It represents a sequence of operations involving error checking

with remote nodes. It is used to check if errors have occurred

during a data transfer. The handle is initialized by calling the

function SCICreateMapSequence

SISCI API - Handles

• sci_dma_queue

 It represent a chain of specifications of data transfers to be

performed using DMA. It is initialized by calling the function

SCICreateDMAQueue.

• sci_local_interrupt

 It represents an instance of an interrupt that an application has

made available to remote nodes. It is initialized when the interrupt

is created by calling the function SCICreateInterrupt.

• sci_remote_interrupt

 It represents an interrupt that can be trigged on a remote nodes. It

is initialized when the interrupt is created by calling the function

SCIConnectInterrupt.

SISCI API

ERROR CODES

• Most of the SISCI API functions returns an error code as an

output parameter to indicate if the execution succeeded or failed

• SCI_ERR_OK is returned when no errors occurred during the

function call.

• The error codes are collected in an enumeration type called

sci_error_t

• The error codes are specified in the

DIS/src/SISCI/src/sisci_error.h file

SISCI API

FLAG OPTIONS

• Most SISCI API function have a flag option parameter

 SCI_FLAG_ ...

 The flags options are is specified in the

DIS/src/SISCI/api/sisci_api.h header file

• The default option for the flag parameter is 0

 NO_FLAGS

• The flag is commonly used, but not defined in the SISCI API

• #define NO_FLAGS 0

SISCI API

SISCI API – Example programs

• Simple example applications are made for the usage of the SISCI

API interface

• Located in the DIS/src/SISCI/cmd/examples/

• Test and benchmark application programs are located in the

DIS/src/SISCI/cmd/test directory

 Testing of the system

 Benchmarking

SISCI API

SISCI API - SCIInitialize()

• SCIInitialize()

 Initialize the SISCI Library

 Checks the driver for CPU type, hostbridge, adapter type to select

the optimized copy function for the system

 Driver version checking

 Allocates internal resources

 The function must be called only once in the application program

and before any other SISCI API function

 If the SISCI library and the driver versions are not consistent, the

function will return SCI_ERR_INCONSISTENT_VERSIONS

SISCI API - SCITerminate()

• SCITerminate()

 Before an application is terminated, all allocated resources should

be removed

 Free the allocated resources that was created by the SCIInitialize()

 Should be the last call in the application

 Should be called only once in the application, independently of

how many SISCI resources you use

SISCI API - SCIOpen()

• SCIOpen() creates a handle (virtual device)

• Each segment must be associated with a handle

• If the SCIInitialize() is not called before SCIOpen(), the function

 will return SCI_ERR_NOT_INITIALIZED

Segment

Local Memory

Segment

Segment

 SCIInitialize()

SCIOpen(&handle1)

SCIOpen(&handle2)

SCIOpen(&handle3)

SCICreateSegment(handle1)

SCICreateSegment(handle2)

SCICreateSegment(handle3)

SISCI API - SCIClose()

• SCIClose()

 Closes the virtual device

 After this call, the virtual device becomes invalid and should not

be used

 If some resources is not deallocated, the SISCI driver will do the

neccessary clean up at program exit

SISCI API – Initialization example

 sci_error_t error;

 sci_desc_t vd;

 SCIInitialize(NO_FLAGS,&error);

 if (error != SCI_ERR_OK) {

 /* Initialization error */

 return error;

 }

 SCIOpen(&vd,NO_FLAGS,&error);

 if (error != SCI_ERR_OK) {

 /* Error */

 return error;

 }

 /* Use the SISCI API */

 SCIClose(vd,NO_FLAGS,&error);

 SCITerminate();

SISCI API

SISCI API - PIO Model

• What is PIO?

 The possibility to have access to physically memory on another

machine is the characteristic and the advantage of the Dolphin

Express technology.

 If the piece of memory is also mapped in the addressable space of

a local process, a data transfer is as simple as a memcpy()

 In such a case, it is the CPU that actively reads from or writes to

remote memory using load/store operations

 Once the mapping is created, the driver is not involved in the data

transfer

 This approach is known as Programmed I/O (PIO)

SISCI API - SCICreateSegment()

• The allocation of a segment on the local host is done with the
function SCICreateSegment()

• Allocates contiguous memory

• The segment is identified by the segmentId

• The SISCI driver creates a list of local segments

• The segmentId for each segment must be unique on the local
machine

• If segmentId already exist, the SCICreateSegment() will return
SCI_ERR_BUSY

Segment

Local Memory

The segments are identified

by the SegmentIds

SISCI Driver
Segment

SCICreateSegment(handle1,segId1)

SCICreateSegment(handle2,segId2)

SISCI API - SCIRemoveSegment()

• SCIRemoveSegment()

 This function will free the resources used by a local segment

 The physical memory is deallocated if the segment was created

with SCICreateSegment()

SISCI API - Creating SegmentIds

• A segmentId for a segment must be unique on the local

machine (32 bit)

• A segment is identified by segmentId and nodeId

• Local and remote nodeId can be used to create a

segmentId

• One possible way to create a segmentId

 localSegmentId = (localNodeId << 16) | remoteNodeId << 8 | KeyOffset;

 remoteSegmentId = (remoteNodeId << 16) | localNodeId << 8 | KeyOffset;

SISCI API - SCIPrepareSegment()

• One machine can have several adapter cards.

• The function SCIPrepareSegment() prepare the segment to be

accessable by the selected Dolphin adapter

Segment

Local Memory

Segment Adapter Card 1

Segment Adapter Card 0

SISCI API - SCIMapLocalSegment()

• SCIMapLocalSegment() maps the local segment into the

applications virtual address space

Segment

Local Memory

Segment

Virtual Segment Address

segAddress = SCIMapLocalSegment(segId)
SCISetSegmentAvailable()

User space

Kernel space

SISCI API - SCISetSegmentAvailable()

• The function SCISetSegmentAvailable makes a local segment

visible to the remote nodes

• The segment must set the local segment available to allow remote

connection

Segment

Local Memory

Segment

Machine B

Remote Node

Machine A

SCIConnectSegment()

SISCI API - SCISetSegmentUnavailable()

• The function SCISetSegmentUnavailable hides an available segment from the

remote nodes

• No new connection will be accepted on that segment

• The call to SCISetSegmentUnavailable doesn’t affect existing remote

connections, which are not even aware of the change.

Segment

Local Memory

Segment

Machine B

Remote Node

Machine A

SCIConnectSegment()

Remote Node

SCISetSegmentUnavailable() - Flag options

• If SCI_FLAG_NOTIFY is specified, the operation is notified to the

remote node connected to the local segment

 In this case, the remote node should disconnect

• If the flag SCI_FLAG_FORCE_DISCONNECT is specified, the

remote nodes are forced to disconnect.

SISCI API - SCIConnectSegment()

• SCIConnectSegment() connects to a segment made available on a

remote node

• Creates and initializes a handle for the connected segment

Segment

Local Memory

Segment

SCIConnectSegment(segId)

Machine B Machine A

Segment Address

SISCI API - SCIConnectSegment()

• The call SCIConnectSegment() must be called in a loop

• The status of the remote segment is not known

 The segment is not created

 The remote node is still booting

 The driver is not yet loaded

 do {

 SCIConnectSegment(&error);

 /* Sleep before next connection attempt */

if (error == SCI_ERR_ILLEGAL_PARAMETER) break;

sleep(1);

 } while (error != SCI_ERR_OK) ;

SISCI API - SCIDisconnectSegment()

• SCIDisconnectSegment()

 The function disconnects from a remote segment connected by the

calls SCIConnectSegment() or SCIConnectSCISpace()

 If the segment was connected using SCIConnectSegment(), the

execution of SCIDisconnectSegment() also generates an

SCI_CB_DISCONNECT event directed to the application that

created the segment.

 If the Segment is still mapped, the function will return

SCI_ERR_BUSY

SISCI API - SCIMapRemoteSegment()

• SCIMapRemoteSegment maps an area of a remote segment connected

with either SCIConnectSegment() into the addressable space of the

program (user space) and returns a pointer to the beginning of the

mapped segment

Segment

Local Memory

Segment

Machine B Machine A

SCIMapRemoteSegment()

Virtual

Segment Address

Segment Address

User space

Kernel space

SISCI API - SCIMapRemoteSegment()

• It is possible to to map only a part of the segment by varying the

the size and offset parameters, with the constraint that the sum of

the size and offset does not go beyond the end of the segment

• Once a memory segment is available, i.e. you have a handle to

either local or remote segment resources, you can access the

segment in two ways:

 Map the segment into the address space of your process and then

access it as normal memory operations - e.g. via pointer operations

or SCIMemCpy()

 Use the Dolphin adapter DMA engine to move data (RDMA)

SCIUnmapSegment()

• SCIUnmapSegment()

 Unmaps the segment from the program’s address space (user

space) that was mapped either with SCIMapLocalSegment() or

SCIMapRemoteSegment()

 It destroy the corresponding handle

 If the error return value is SCI_ERR_BUSY, the segment is in use

SISCI API – SCIGetRemoteSegmentSize()

• SCiGetRemoteSegmentSize()

 Return the size of the remote segment after a connection has been

established with SCIConnectSegment()

SISCI API - Data Transfer

SISCI API - Data Transfer

• The virtual segment address can be used for data transfer

 Using the address directly doing CPU load/store operations

 Using SCIMemCpy()

• If the function succeeds the return value is a pointer to the beginning of
the mappped segment

• The address can be used directly to transfer data

 *remoteAddress = data;

• Note that the address pointer is declared as volatile to prevent the
compiler from doing wrong optimization of the code

 volatile *unsigned int remoteMapAddr;

 remoteMapAddr = (volatile *unsigned int)SCIMapRemoteSegment();

 for (i=0; i < numberOfStores; i++) {

 remoteMapAddr[i] = i;

 }

SISCI API - SCIMemCpy()

• The SCIMemCpy() use PIO for data transfer

• The function is optimized for the CPU and various hostbridges

• Most library copy functions are written as assembler functions

• Transfer a specified block of data

• Flag option to enable error checking.

• Use MMX and SIMD registers to optimize the data transfer

• Note: Do note use SCIMemCopy()

 Old implementation and not very efficient

• – Allocates error checking resources for each call

SISCI API - SCIMemCpy()

• SCIMemCpy() use MMX and SIMD registers to optimize the data
transfer

 This is auto detected in SCIInitialize()

Segment

Local Memory

Machine A

SCI

ADAPTER

CPU

Segment

Local Memory

Machine B

SCI

ADAPTER

SCI

SISCI API - PIO Model

• PIO model call sequence on client and server node

Segment

Local Memory

Machine B

CPU

SCICreateSegment()

SCIPrepareSegment()

SCIMapLocalSegment()

SCISetSegmentAvailable()

CPU

Segment

Local Memory

SCIConnectSegment()

SCIMapRemoteSegment()

SCIMemCpy()

Machine A

State diagram for a local segment

PREPARED

NOT AVAILABLE
NOT PREPARED AVAILABLE

SCIRemoveSegment SCIRemoveSegment SCIRemoveSegment

SCICreateSegment

SCIPrepareSegment SCISetSegmentAvailable

SCISetSegmentUnavailable

SISCI API

SISCI API - SCIShareSegment()

• SCIShareSegment()

 permits other application to "attach" to an already existing local

segment, implying that two or more application can share the same

local segment

SISCI API - SCIAttachLocalSegment()

• SCIAttachLocalSegment()

 SCIAttachLocalSegment() causes an application to "attach" to an
already existing local segment, implying that two or more
applications are sharing the same local segment

 The application which originally created the segment ("owner")
must have preformed a SCIShareSegment() in order to mark the
segment "shareable".

 The local segment is identified using the segmentId

 If multiple local processes share the segment, all attached
processes must perform a SCIRemoveSegment() before the
segment is physically removed

 The creator and all attached processes share ”ownerships” and
have the same permissions

SISCI API - SCIShareSegment()

Segment

Local Memory

SCICreateSegment()

SCIShareSegment()

Process 1 Process 2 Process 3

SCIAttachLocalSegment() SCIAttachLocalSegment()

SISCI API

SISCI API - Lock Operations

• A lock segment is created as a regular segment

• The flag option SCI_FLAG_LOCK_OPERATION to the function

SCIMapRemoteSegment() maps the segment as a lock segment.

 SCIMapRemoteSegment(SCI_FLAG_LOCK_OPERATION)

• Lock operations are ONLY available with the SCI/D Dolphin

Interconnect

SISCI API - Multiple connections

• A segment can have several connections

• The protocol must be implemented to ensure that only one machine access
the memory (lock operation)

Segment

Local Memory

Segment

Machine A

Machine B

Machine C

Machine D

Machine E

SISCI API - Multiple Connections and Lock Operations

• The remote machines are trying to get the lock

• Machine E gets the Lock and have access to the remote segment

Segment

Local Memory

Segment

Machine A
Machine B

Machine C

Machine D

Machine E

Lock Segment

SISCI API - Lock Operations

• The remote machine B reads the lock segment

• The value is returned to machine B

• The adapter increments the value and write it to the lock segment

• Atomic operation

Local Memory

Machine A

Machine B Lock Segment

Read access Read access

Value Value

Value + 1

SCI Adapter

SISCI API – Lock Operations

/* Try to get the lock */

readLockValue = remoteLockSeg[0];

if (readLockValue == LOCK_INIT_VALUE) {

 /* Got the lock and ’owns’ the remote data segment */

 < Do the operations on the data segment >

 /* Release the lock */

 remoteLockSeg[0] = LOCK_INIT_VALUE;

} else {

 /* Another node got the lock */

}

SISCI API

SISCI API – ERROR CHECKING

• The hardware protocols for IX, DX and SCI garantees that the

data are delivered successfully when error checking mechanism is

used and the sequence check returns SCI_ERR_OK

• Garanteed correct data delivery from the function call

SCIStartSequence() and SCICheckSequence()

• The SCICheckSequence() flushes the write buffers from the CPU

and wait for the outstanding requests

• The SCICheckSequence function returns when all outstanding

packets have returned (Store Barrier)

• The error checking rate depends of the application and system

• Some overhead is added to the data transfer

SISCI API – Error Checking

• A session is established between the nodes that communicates

 A heartbeat mechanism make sure that the remote node
is alive

• Periodically checking of the status of the remote node

• The error checking mechanism check the session status, the
interrupt status register and the cable status.

SISCI

IRM

ADAPTER

SISCI

IRM

ADAPTER

Session

Remote status checking

Heartbeats

SISCI API – SCICreateMapSequence

• SCICreateMapSequence()

 The function creates and initializes a new sequence descriptor that can

be used to check for transmission errors

• SCICreateMapSequence(remoteMap,&sequence,)

 Creates a sequence assosiated with a remoteMap

• SCIStartSequence()

 Check the adapter status, SCI connection and the valid remote map

 do {

 /* Start the data error checking */

 sequenceStatus = SCIStartSequence(sequence,....);

 } while (sequenceStatus != SCI_SEQ_OK) ;

SISCI API – SCIStartSequence

• SCIStartSequence()

 The function performs the preliminary check of the error flags on

the SCI adapter before starting a sequence of read and write

operations on the mapped segment

 Subsequent checks are done calling SCICheckSequence()

 If the return value is SCI_SEQ_PENDING there is a pending error

and the program is required to call SCIStartSequence until it

succeeds before doing other transfer operations on the segment

SISCI API – SCICheckSequence

• SCICheckSequence()

 The function checks if any error has occurred in the data transfer

controlled by a sequence since the last check

 The previous check can have been done by either calling either

SCIStartSequence or the SCICheckSequence itself

 The function can be invoked several times in a row without calling

SCIStartSequence

 By default SCICheckSequence also flushes the CPU write buffers and

wait for all outstanding SCI transactions to complete. In other words

it internally performs an action similar to the SCIStoreBarrier()

• SCI_FLAG_NO_FLUSH

• SCI_FLAG_NO_STORE_BARRIER

 SCICheckSequence(SCI_FLAG_NO_FLUSH |

 SCI_FLAG_NO_STORE_BARRIER)

SISCI API – SCIStartSequence() / CheckSequence()

• The status from the sequence functions can return four possible
values:

• SCI_SEQ_OK

 The transfer was successful

• SCI_SEQ_RETRIABLE

 The transfer failed due to non-fatal error but can be immediately
retried (e.g. The system is busy because of heavy traffic)

• SCI_SEQ_NON_RETRIABLE

 The transfer failed due to a fatal error (e.g. cable unplugged) and
can be retried only after a successful call to SCIStartSequence()

• SCI_SEQ_PENDING

 The transfer failed, but the driver hasn’t been able to determine the
severity of the error (fatal or non-fatal). SCIStartSequence() must
be called until it succeeds

SISCI API – SCIStartSequence() / CheckSequence()

SciStartSequence

SCI_SEQ_OK?

Transfer Data

SciCheckSequence

Data Transfer OK

SCI_SEQ_RETRIABLE SCI_SEQ_NON_RETRIABLE
SCI_SEQ_OK?

SCI_SEQ_OK

SCI_SEQ_OK

SISCI API – SCIStartSequence() / CheckSequence()

 {/* Start the data error checking */

 do {

 do

 sequenceStatus = SCIStartSequence(sequence,....);

 } while (sequenceStatus != SCI_SEQ_OK);

 /* The SCI connection is OK */

 <Do the data transfer>

 do {

 sequenceStatus = SCICheckSequence(sequence,....);

 while (sequenceStatus == SCI_SEQ_PENDING) ;

 if (sequenceStatus == SCI_SEQ_NON_RETRIABLE) {

 <error handling>

 break;

 }

 } while (sequenceStatus != SCI_SEQ_OK);

 /* Successful data transfer */

SISCI API – SISCI API

SISCI API – SCIFlush()

• SCIFlush()

 Flushes the data from the CPU buffer, cache, IO-system and from

the adaper card

• CPU flush

• Store barrier

 If flag option SCI_FLAG_FLUSH_CPU_BUFFERS_ONLY is

specified, only the the CPU buffer/cache is flushed

SCIFlush() - Write Combining - SCI

CPU Memory

Hostbridge

PSB

LC
SCI

LC

SCI

CPU Cache 32/64 Bytes

CPU Cache

Line Buffer

Memory Bus

64/128 Bytes

Write

Combining

buffers

PCI Bus

PCI Bus

32/64/128 Bytes

128 Bytes

SISCI API – SCIStoreBarrier()

• SCIStoreBarrier()

 Synchronize all the access to the mapped segment

 The function flushes all outstanding transactions

 The function does not return until all outstanding transactions has

been confirmed

SISCI API

SISCI API - SCICreateDMAQueue()

• SCICreateDMAQueue()

 Allocates resources for a queue of DMA transfers

 Creates, initializes and returns a handle for the new DMA queue

DMAQueue

Local Memory

Machine A

*DMAQueue

SISCI API - SCIEnqueueDMATransfer()

• SCIEnqueueDMATransfer

 Adds a specification of the new future transfer to a DMA queue

 Creates a control block in the memory for each DMA transfer

• The control block contains the source and destination addresses and

transfer size

• The control blocks can be chained

 Either the source or the destination of the transfer must be a local

segment

 By default the transfer operation is PUSH, i.e. from the local

segment to the remote segment

 DMA size alignment requirements is 8 bytes.

SISCI API - SCIEnqueueDMATransfer()

DMAQueue

Local Memory

Machine A

*DMAQueue

Segment

Local Memory

Machine B

Segment

Control Block

Control Block

Control Block

Data

Control

DMA

Engine

Data

Segment Adresser

Data

DMA Descriptor

SISCI API - SCIPostDMAQueue()

Machine A

Dolphin

ADAPTER
Segment

Local Memory

Machine B

Dolphin

ADAPTER

SCI

DMAQueue

Local Memory

Segment

Control Block

Control Block

Control Block

DMA machine

DMA Data

DMA Control

SISCI API - SCIPostDMAQueue()

• SCIPostDMAQueue()

 Starts the DMA machine on the Dolphin Adapter

 Fetch the first control block from the memory

 Starts the data transfer

 Fetch the next control block from the memory

SISCI API - SCIWaitForDMAQueue()

• SCIWaitForDMAQueue()

 The function blocks a program until a DMA queue has finished

• Completion of the DMA transfer

• An error occurred

 The function returns the current state of the queue

SISCI API - SCIResetDMAQueue()

• SCIResetDMAQueue()

 Reset or empties a DMA queue (without removing the queue)

 The queue can be reused for another chain of transfers

 This function not can be called when the queue state is POSTED.

SISCI API - DMA Model

• DMA call sequence on client and server node

Machine B

SCICreateSegment()

SCIPrepareSegment()

SCIMapLocalSegment()

SCISetSegmentAvailable()

Segment

SCIConnectSegment()

SCIMapRemoteSegment()

SCICreateDMAQueue()

Machine A

SCIWaitForDMAQueue()

SCIEnqueueDMATransfer()

SCIPostDMAQueue()

Local

Memory

SCI

ADAPTER

DMA machine

SCI

ADAPTER

Segment

Local

Memory

SISCI API - DMA Optimization

• For each system function call, some overhead is added

• An optimized version can be used by combining several SISCI

function calls into one function call

SCICreateDMAQueue()

SCIWaitForDMAQueue()

SCIEnqueueDMATransfer()

SCIPostDMAQueue()

SCIResetDMAQueue()

SCIEnqueueDMATransfer(SCI_FLAG_DMA_POST,

 SCI_FLAG_DMA_WAIT,

 SCI_FLAG_DMA_RESET)

SCICreateDMAQueue()

Alternative 1 Alternative 2 (optimized version)

SISCI API - SCIEnqueueDMATransfer()

 SCIEnqueueDMATransfer(dmaQueue,

 localSegment,

 remoteSegment,

 localOffset,

 remoteOffset,

 transSize,

 SCI_FLAG_DMA_POST |

 SCI_FLAG_DMA_WAIT |

 SCI_FLAG_DMA_RESET,

 &error);

SISCI API - State Diagram for DMA operations

IDLE

GATHER

POSTED

DONE

ERROR

ABORTED

SCIResetDMAQueue

SCIResetDMAQueue

SCIEnqueueDMATransfers

SCIPostDMAQueue

SCIRemoveDMAQueue SCICreateDMAQueue

SCIRemoveDMAQueue
SCIAbortDMAQueue

Error

Success

SCIResetDMAQueue

SCIEnqueueDMATransfer

SCIWaitForDMAQueue

SISCI API - SCIDMAQueueState()

• SCIDMAQueueState()

 Returns the current state of the DMA queue

• The user must poll the status to determine when the DMA has completed

• Can be used as an option to the SCIWaitForDMAQueue()

• DMA queue states

 SCI_DMAQUEUE_IDLE

 SCI_DMAQUEUE_GATHER

 SCI_DMAQUEUE_POSTED

 SCI_DMAQUEUE_DONE

 SCI_DMAQUEUE_ABORTED

 SCI_DMAQUEUE_ERROR

SISCI API

SISCI API – Interrupt Model

• A write access to a remote register triggers an interrupt on the

remote node

• The driver handles the interrupt and forwards the interrupt to the

correct process

Machine A

Dolphin

ADAPTER

CPU

Segment

Local Memory

Machine B

Dolphin

ADAPTER

SCI

INTERRUPT

HANDLER

Interrupt

SISCI API – SCICreateInterrupt()

• SCICreateInterrupt()

 Creates an interrupt resource and makes it available for remote

nodes

 Initialize a handle for the interrupt

 An interrupt is associated by the driver with a unique number

(interruptId)

 If the flag SCI_FLAG_FIXED_INTO is specified, the function use

the number passed by the caller

SISCI API – SCIConnectInterrupt()

• SCIConnectInterrupt()

 Connects the caller to an interrupt resource available on a remote
node

 The function creates and initializes a descriptor for the connected
interrupt

 Since the status of the remote interrupt is not known (i.e, not
created) the SCIConnectInterrupt() must be called in a loop

 do {

 SCIConnectInterrupt(...., &error);

 sleep(1);

 while (error != SCI_ERR_OK) ;

SISCI API – SCITriggerInterrupt()

• SCITriggerInterrupt()

 The function triggers an interrupt on a remote node

 The remote node gets notified

SISCI API – SCIWaitForInterrupt()

• SCIWaitForInterrupt()

 This function blocks a program util an interrupt is received

 If the flag option SCI_INIFINITE_TIMEOUT is specified, the

function wait until the interrupt has completed

 If a timeout value is specified, the function will gives up when the

timeout expires.

SISCI API – INTERRUPT MODEL

Machine A

Dolphin

ADAPTER

Interrupt

Local Memory

Machine B

Dolphin

ADAPTER

Suspended

process

Interrupt

SCITriggerInterrupt()

SCIConnectInterrupt()
SCIWaitForInterrupt()

SCICreateInterrupt()

SCIConnectInterrupt()

SCITriggerInterrupt()

User space

Kernel space

User space

Kernel space

SISCI API – SISCI API

SISCI API – SCIProbeNode()

• SCIProbeNode()

 The function check if the a remote node on the SCI network is

reachable

 The function is useful to check if all nodes on the cluster is

initialized and reachable

 Possible error codes

• SCI_ERR_NO_LINK_ACCESS

• SCI_ERR_NO_REMOTE_LINK_ACCESS

SISCI API – SCIQuery()

• SCIQuery

 Provides information about the underlying Dolphin Express system

 Each main group of requests defines its own data structure to be

used as input and output to SCIQuery

 The queries consist of the main COMMAND and a subcommand

• SCI_Q_ADAPTER

 SCI_Q_ADAPTER_SERIAL_NUMBER

 SCI_Q_ADAPTER_NODEID

• SCI_Q_SYSTEM

 SCI_Q_SYSTEM_HOSTBRIDGE

 Definitions of the queries are defined in

 DIS/src/api/sisci_api.h file
Dolphin

ADAPTER

SCIQuery()

 SYSTEM

Driver

SISCI API - SCIQuery() Example

 sci_error_t GetLocalNodeId(unsigned int localAdapterNo,

 unsigned int *localNodeId)

 {

 sci_query_adapter_t queryAdapter;

 sci_error_t error;

 unsigned int nodeId;

 queryAdapter.subcommand = SCI_Q_ADAPTER_NODEID;

 queryAdapter.localAdapterNo = localAdapterNo;

 queryAdapter.data = &nodeId;

 SCIQuery(SCI_Q_ADAPTER,&queryAdapter,NO_FLAGS,&error);

 *localNodeId = nodeId;

 return error;

 }

SISCI API

SISCI API – Privileged operation

• SCIGetCSRRegister()

 This function reads a value from the specified CSR register on the

Dolphin adapter

• SCISetCSRRegister()

 This function writes a value to the specified CSR register on the

Dolphin adapter

• SCIConnectSCISpace()

 This function connects directly to any valid cluster address without

any restriction

 The responsibility of the segment handling is left to the

programmer and the correctness of the used addresses

SISCI API - SCIConnectSCISpace

• Allows the user to create a remote segment mapping any memory

in the cluster

• Must be used with care as the same way as all the physical SISCI

functions

• Not available with DX

• The user must specify the 64 bit network address

 Physical remote nodeId (16 bit)

 OffsetHi (16 bit)

 OffsetLo (32 bit)

• IO address on remote node (offset)

SISCI API

SISCI API – Callbacks

• Callbacks is used as an alternative methode for the

SCIWaitFor...() functions

• Callback wont block the application

• The SISCI API support segment, DMA and interrupt callbacks

• A callback function and a callback parameter must be specified

• The callback functions require additional compilation setting in

the application

 -D_REENTRANT

• SCI_FLAG_USE_CALLBACK must be specified in the

appropriate function calls

Application

SISCI API – Callback implementation

The application do a call to the function

with CALLBACK specified.

Lib

• A thread is created in the library

• The library thread calls waitFor...()

• The application thread returns from the

 function and can continue the execution

SISCI Driver

Kernel space

• The driver waits until a callback event occurs

 and wakes up the thread

User space

• The thread calls the

• applications callback function

1

1

2

2

4

3

4

3

SISCI API – DMA Callback

• The DMA callback is trigged when the DMA has finished

 Either completed successfully or failed

• Specify SCIPostDMAQueue(CALLBACK)

SISCI API – Local Segment Callback

• A local segment callback event is issued every time the segment

state is changed

 Someone connects or disconnects to the local segment

 SCI link status change (operational/not operational)

 A connection is lost from a remote node

• Specify SCICreateSegment(CALLBACK)

• Callback reasons:

 SCI_CB_CONNECT

 SCI_CB_DISCONNECT

 SCI_CB_OPERATIONAL

 SCI_CB_NOT_OPERATIONAL

 SCI_CB_LOST

SISCI API – Remote Segment Callback

• A remote segment callback event is issued every time the segment

state is changed

 SCI link status change (operational/not operational)

 The connection is lost to the remote node

• Specify SCIConnectSegment(CALLBACK)

• If a CB_DISCONNECT callback is issued, it’s a request from the

remote node to ”please” disconnect

 It’s a request not a demand

State diagram for remote segment callback

SCIConnectSegment

DISCONNECTING

OPERATIONAL

DISCONNECTING

NOT OPERATIONAL

OPERATIONAL

NOT OPERATIONAL

CONNECTING

LOST

CB_LOST

CB_CONNECT CB_DISCONNECT CB_LOST

CB_LOST

CB_LOST CB_DISCONNECT

CB_LOST

CB_OPERATIONAL

CB_NOT_OPERATIONAL

CB_NOT_OPERATIONAL

CB_OPERATIONAL

Segment state

Callback reasons

SISCI API – Interrupt callback

• An interrupt callback is issued every time an interupt from a

remote node is seen on the interrupt handle

• Specify SCICreateInterrupt(CALLBACK)

SISCI API – Direct Transfer

SISCI API - SCIAttachPhysicalMemory

• Enable the possibility to set up a transfer into other devices than

main memory

• In normal case, the transfer is between the local segment allocated

in local memory and the remote node

• This function enables attachment of physical memory regions

where the Physical PCI/PCIe bus address (and mapped CPU

address) is already known

• The function will attach the physical memory to the SISCI

segment which later can be connected and mapped as a regular

SISCI segment

• The mechanism can can attach and transfer data directly to/from

an extern PCI board through the Dolphin adapter

 Memory boards

 Preallocated main memory

 IO device

SISCI API - SCIAttachPhysicalMemory

• SCICreateSegment() with flag SCI_FLAG_EMPTY must have been called in

advance

Machine B

CPU

SCICreateSegment(SCI_FLAG_EMPTY)

SCIPrepareSegment()

SCIMapLocalSegment()

SCISetSegmentAvailable()

CPU

Segment

Local Memory

SCIConnectSegment()

SCIMapRemoteSegment()

Machine A

SCIAttachPhysicalMemory()

PCI BUS

SCI

Adapter

Memory

Board

SISCI API - SCIAttachPhysicalMemory

 SCIAttachPhysicalMemory(sci_ioaddr_t ioaddress,

 void *address,

 unsigned int busNo,

 unsigned int size,

 sci_local_segment_t segment,

 unsigned int flags,

 sci_error_t *error);

sci_ioaddr_t ioaddress : This is the address on the PCI bus that a PCI bus

 master has to use to write to the specified memory

void * address: This is the (mapped) virtual address that the application has to

 use to access the device. This means that the device has to be

 mapped in advance bye the devices own driver.

busNo: The bus number on the local PCI bus

SISCI API – SCIAttachPhysicalMemory

CPU Chipset

Dolphin

Adapter

Memory

Memory

Board

PCI bus

64 bit / 66 MHz

SISCI API

SISCI API - Physical DMA

• The standard SISCI DMA functions require local

segment and remote segment as input parameter.

• Physical DMA requires the local and remote ioaddr

• The physical DMA can be used to transfer directly data

to/from an IO device on the PCI bus / PCI Express

SISCI API - SCIphDmaEnqueue

• The function has the same functionality as

SCIEnqueueDMATransfer()

• Instead of using the local and the remote segment, the function has

the local and the remote ioaddress as the source and the target

specification

• To transfer data direct to/from excplit memory on the system

 IO board

 Memory board

SISCI API - SCIphDmaEnqueue

• DMA call sequence on client and server node

Machine B

IO Board

SCICreateDmaQueue()

Machine A

SCIWaitForDMAQueue()

SCIphDmaEnqueue()

SCIphDmaStart()

Dolphin

ADAPTER

DMA machine

Dolphin

ADAPTER

IO Board

