
Device Lending in PCI Express Networks

Lars Bjørlykke Kristiansen1, Jonas Markussen2, Håkon Kvale Stensland2, Michael Riegler2,
Hugo Kohmann1, Friedrich Seifert1, Roy Nordstrøm1, Carsten Griwodz2, Pål Halvorsen2

1Dolphin Interconnect Solutions AS, Norway
2Simula Research Laboratory, Norway & University of Oslo, Norway

{larsk, hugo, sfr, royn}@dolphinics.no
{jonassm, haakonks, michael, griff, paalh}@simula.no

ABSTRACT
The challenge of scaling IO performance of multimedia sys-
tems to demands of their users has attracted much research.
A lot of effort has gone into development of distributed sys-
tems that add little latency and computing overhead. For
machines in PCI Express (PCIe) clusters, we propose Device
Lending as a novel solution which works at a system level.

Device Lending achieves low latency and extremely low
computing overhead without requiring any application-specific
distribution mechanisms. For applications, the remote IO
resource appears local. In fact, even the drivers of the op-
erating system remain unaware that hardware resources are
located in remote machines.

By enabling machines in a PCIe cluster to lend a wide va-
riety of hardware, cluster machines can get temporary access
to a pool of IO resources. Network cards, FPGAs, SSDs, and
even GPUs can easily be shared among computers. Our pro-
posed solution, Device Lending, works transparently with-
out requiring any modifications to drivers, operating systems
or software applications.

CCS Concepts
•Computer systems organization → Distributed ar-
chitectures; •Software and its engineering → Dis-
tributed systems organizing principles;

Keywords
Multimedia, GPU, PCIe, interconnect, device sharing

1. INTRODUCTION
Performing multimedia tasks in real time are challeng-

ing and frequently require distributed systems. Tetzlaff et
al. [28] early provided a classification for designing a dis-
tributed system. Actual implementations have often ad-
dressed requirements for low latency and high throughput
by specialized interconnect networks [8, 6, 10, 7]. The PCI
Express (PCIe) interconnect network [5, 19], which today

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

NOSSDAV’16, May 13 2016, Klagenfurt, Austria
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4356-5/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2910642.2910650

is the dominant interconnection technology inside individ-
ual computers, can be connected to the internal networks of
remote computers by using PCIe non-transparent bridges
(NTB) [23]. The communication over such an intercon-
nect network may be performed just like in classical inter-
connected networks, for example by implementing a high-
performance TCP/IP stack for PCIe [11].

From the point of view of each computer, an NTB is just
another PCIe device that offers memory areas for mapping
into the remote computer’s physical address space. An un-
usual property of the NTB, is that this memory is not lo-
cated on it, but is rather a mapping of arbitrary memory
areas within the domain of other computers that are also
connected to the same NTB.

This raises the question whether all PCIe devices that are
connected to any of the computers attached to such an NTB,
can be considered part of one common resource pool. With
Device Lending, devices can by lent by one computer into
another without involving the CPU in data path forwarding.

All resources of any PCIe device are represented by mapped
addresses, including their control registers and interrupts, so
all of them can be mapped by an NTB. Obviously, such map-
ping cannot be trivial. Whereas data areas can be mapped
into a computer’s address space just like those of locally in-
stalled devices, a reverse mapping is required for interrupts.
Furthermore, devices can be lent dynamically by one com-
puter to another only if the operating systems can handle
that PCIe devices are added to and removed from their ad-
dress space, i.e., if they have hotplug support [14] for the
specific device.

Once these problems are solved, we can see that the power
of this approach goes far beyond the classic interconnection
challenges of a streaming server. Within a small cluster,
devices can be pooled together and time-shared by different

Root node

Root node

Root node

Root node
Device Pool

Network

Devices

Devices

Figure 1: PCIe devices on separate machines could be pooled
together and shared between multiple computers.

Root Compex

CPU Cores
Memory

NTB

Root Compex

CPU Cores
Memory

EndpointDownstream port Switch Upstream port

Figure 2: An example of a PCIe topology.

computers (Figure 1). Network cards can be assigned to a
computer while it needs high throughput. Instead of copying
data between SSD disks over traditional network, the disk
can be borrowed and accessed directly. For a large CUDA
programming task, a computer can lend additional cards and
use CUDA’s own peer-to-peer model instead of relying on
additional middleware like rCUDA [4]. Pogorelov et al.[21]
have shown how a multimedia workload can be offloaded to
a remote GPU using Device Lending.

In this paper, we present how we achieve this pooling of
PCIe devices using only native device drivers. We present
the state of our proof-of-concept implementation of Device
Lending for Ethernet network cards and SSD disks, and in
more detail, our prototype for GPU lending. We show that
the GPUs can be lent dynamically without any modifications
to drivers or user-space applications.

The paper is organized as follows: we present essential
capabilities of PCIe in Section 2. Section 3 addresses the
current state of PCIe virtualization support. In Section 4
we discuss related work. Section 5 goes into details of our
implementation of Device Lending, followed by performance
results for GPU lending in Section 6. Conclusion and further
opportunities are discussed in Section 7.

2. PCI EXPRESS
PCIe is an industry standard for architecture-independent

connection of hardware peripherals to computers. In PCIe
terminology, such a peripheral is a PCIe endpoint. While its
predecessor PCI relied on parallel buses that were shared be-
tween endpoints, PCIe uses point-to-point links (still called
buses) that consist of 1 to 32 lanes. These buses can be
connected to PCIe switches, which may be connected to
other switches, forming a tree structure where endpoints are
leaves, switches are inner nodes, and buses are edges. An
example of a PCIe topology is illustrated in Figure 2. The
connection of a bus to a switch is called a port, but (pri-
marily to illustrate how backwards compatibility with PCI
is achieved) it is also known as a bridge. Ports towards the
tree root are called upstream, the other downstream. The
network of buses, endpoints and switches is referred to as
fabric. For communication, PCIe specifies a layered proto-
col structure, whose upper layer is called transaction layer,
exchanging transaction layer packets (TLPs). Routing oc-
curs in a strictly hierarchical fashion, i.e., packets do not
need to pass through the root of the tree.

At the root of the PCIe tree is the root complex, which an
implementation can either interpret as an endpoint that is
connected to the root node of the fabric or as being the root
node. In this paper, we refer to the root complex as the root

node. Directly connected to the root complex is the CPU
core and memory controller. Each endpoint may act like a
group of distinct devices. Each of these is called a function
and is separately addressable by the triplet of its bus, device
and function IDs, referred to as its BDF.

Both endpoints and buses are detected by reading their
configuration space. At system boot, the system (BIOS or
OS) scans possible BDFs for vendor IDs in a process called
bus enumeration. If an endpoint or bus is present at a given
BDF, the system reads the associated configuration space.
This contains data structures in a standardized format [19],
allowing the device to define its requirements.

2.1 Memory-mapped IO
When a configuration space is found at a given BDF, the

system reads the its Base Address Registers (BARs) to de-
termine the function’s size requirements and number of ad-
dress spaces that must be mapped into the host’s linear ad-
dress space. This mapping allows the CPU to access device
registers of the endpoint through regular memory accesses.
This process is called Memory Mapped IO (MMIO) and al-
lows memory operations to be transparently translated into
TLPs by devices and the CPU.

The system writes the mapped addresses into the BARs,
which allows the endpoint to interact with the host machine.
If the device has an onboard Direct Memory Access (DMA)
engine, it can be instructed to read from and write to any
memory buffers directly, including main memory and other
endpoints. Without a DMA engine, the CPU must write to
MMIO registers to transfer data.

2.1.1 Posted and non-posted transactions
Some PCIe requests require end-to-end notification upon

completion. These requests are called non-posted transac-
tions, while requests that do not require notification are
posted transactions. A memory write request is an exam-
ple of a posted transaction. The requester sends the write
request along with the data and after it leaves the egress port
it is no longer the responsibility of the requester. Memory
read requests, on the other hand, requires explicit comple-
tion TLPs.

Non-posted requests are significantly affected by the length
of a PCIe path. The longer the path, the higher the request-
completion latency becomes. In addition, the number of
read requests in flight is limited by how many the requester
supports. The number of supported read requests in flight
has an impact on read performance.

2.1.2 Transparent bridges
A switch is associated with one contiguous address range

in the host address space and is aware of it. The address
range is called address window, and spans all address ranges
assigned to endpoints downstream of this switch. Each port
on the root complex is associated with its own contiguous
address range. This allows shortest-path routing in the tree
based on physical address. Switches and their ports perform
only routing in this scenario, and are transparent in that
sense. PCIe bridges can be regarded as transparent bridges.

2.1.3 Non-transparent bridges
It is desirable to extend PCIe out of the single computer

and use it for high-speed interconnection networks due to its
high bandwidth and low latency [22]. One way of doing this

GPU MMIO range

GPUNIC

NIC
MMIO range

Hot-plug bridge address window

Disk controller

Disk controller
MMIO range

Hot-plug slot

Physical address space

Figure 3: Physical address ranges are reserved by OS or
BIOS at boot time. Memory requirements of hot-plugged
devices must fit within the already existing address windows.

is by using NTBs [23]. Although not standardized, NTBs
are widely adopted and all NTB implementations have sim-
ilar capabilities. Several processor architectures, including
recent Intel Xeon CPUs, support NTB implementations [26].

Despite the name, NTBs do actually appear as PCIe end-
points in one or more PCIe fabrics at the same time. They
are mapped with large MMIO areas similar to other end-
points. However, unlike other endpoints and like transpar-
ent bridges, memory operations on these areas are forwarded
from one fabric into another. Since an NTB is mapped dif-
ferently in each host’s address space, it performs address
translation on the TLPs during forwarding. This address
translation is similar to a single-level page table. Effectively,
NTBs create a shared memory architecture across several
hosts [13].

However, an NTB address space is not necessarily lin-
ear. Its MMIO area is divided into equally sized segments,
and each segment can be mapped anywhere into the remote
host’s address space. This is done by replacing part of the
address with a per-segment offset into the remote host’s ad-
dress space. Not only does this allow a remote host to access
local RAM memory, it also enables a remote host to access
MMIO areas of local PCIe devices.

2.2 Message-signaled interrupts
Whereas physical interrupts lines were used in traditional

PCI, PCIe uses Message-Signalled Interrupts (MSI) [17, 19].
When an endpoint issues an MSI, this is actually a normal
memory write to a special address, which is then interpreted
by the chipset and used to generate an interrupt to the CPU.
For our work, this has the essential implication that the
address of an MSI can be mapped through an NTB.

2.3 Hot-plugging
The idea of lending devices without any OS changes what-

soever includes the goal that the devices must appear to and
disappear from the OS at run-time. Obviously, there are
device drivers that are not capable of coping with run-time
appearance or disappearance. We can address the challenges
that occur on a level “underneath” the OS.

PCIe specifies the ability of hot-plugging devices, mak-
ing them available to the system while it is running. This
ability was designed for replacing devices without rebooting
the machine [22, 14]. Consequently, most OS implemen-
tations reserve MMIO ranges at boot time and keep them
unchanged until reboot.

This is sufficient for hot-plugging in the sense of hot-
replace, but problematic for hot-add, as shown in Figure 3.

When a device is hot-plugged, it appears in a port of a
PCIe switch whose contiguous address range has already
been mapped. A worst-case reservation for an arbitrary end-
point for every hot-plug capable port of a switch is not usual
but may be feasible. However, a hot-add operation may
plug an entire subtree of devices into the port, with an ar-
bitrarily large requirement for MMIO range. If the required
address range is too large, a remapping of the host address
space must be undertaken. This is, however, non-trivial, and
few OSes support it currently. In our implementation, the
hot-add variant of hot-plugging becomes trivial, as devices
become accessible through the NTB. The already allocated
address space is large enough to contain all the MMIO areas.

3. VIRTUALIZATION SUPPORT IN PCIE
Traditionally, virtualization has been used to provide host

resources to guest OSes in virtual machines (VM). Since end-
points are already mapped into the host address space, and
the VM has a different memory layout than the host, they
can traditionally not access endpoints without specialized
drivers in the guest OS, which are aware of the mapping.
Due to the performance penalty of this (and the breach of
VM isolation that a common memory layout would bring),
dedicated virtualization units have been introduced.

3.1 IO Memory Management Unit
By organizing memory in pages and adding a software-

defined page-table, a Memory Management Unit (MMU)
can translate addresses accessed by the CPU before passing
them to chipset and memory controller. The MMU provides
every processes in the host OS as well as every guest OS in a
VM their own virtual, linear address space, while the physi-
cal memory can be fragmented or non-existent (e.g., swapped
out).

The IO Memory Management Unit (IOMMU) [9] is sim-
ilar to an MMU, but it provides virtualization of addresses
between chipset (including CPU cores and MMU) and PCIe
fabric. One of the most important features of the IOMMU is
the DMA remapper, which translates addresses of memory
operations from any IO device. In other words, it translates
IO virtual addresses to physical addresses.

Similarly to pages mapped by an MMU, an IOMMU can
group PCIe functions into domains, where each domain has
separate mappings and its own address space. Such a do-
main can be part of the address space of a VM, while other
PCIe functions remain isolated from the VM. This allows
the VM to interact directly with the device using native
device drivers in the guest OS, often referred to as PCIe
passthrough.

Importantly, there is nothing that prevents the IOMMU
from performing such a mapping for the host OS as well.
This is an opportunity for Device Lending.

3.2 Single-Root IO Virtualization
Unlike the MMU’s page maps, IOMMU mappings are not

process-specific. Since IOMMU supports only one mapping
per PCIe function, it can only assign an endpoint function to
a single VM at a time. Single-Root IO Virtualisation (SR-
IOV) [20] addresses this. SR-IOV-aware device can allow
single physical PCIe functions to act as multiple virtual PCIe
functions, allowing SR-IOV to map a single physical function
to several VMs.

3.3 Performance penalty
As with most abstractions, DMA remapping brings a per-

formance overhead. The translation tables are held in mem-
ory like the MMU’s. When a memory access passes through,
the IOMMU must perform a multi-level table look-up. Fur-
thermore, it is located in the root complex, and all TLPs
must be routed through the root to perform DMA remap-
ping. In addition, unpredictable access patterns using small-
sized pages can lead to thrashing of the IO translation look-
aside buffer. PCI-SIG has developed an extension of the
transaction layer protocol that allows caching of mapped
addresses on the PCIe devices [19], but this is not widely
available yet.

4. RELATED WORK
The idea of a unified bus for the inner components of a

computer with those of another is not new. It was imagined
for both ATM [24] and SCI [1]. These ideas never got im-
plemented, because none of these technologies were picked
up for the internal interconnection networks of computers.

PCIe is the dominant standard for the internal intercon-
nection network. It is also proving to be a relevant contender
for an external interconnection network. PCIe, however, was
designed to be used within a single computer system only.
In this section, we will discuss some solutions for sharing IO
devices between multiple hosts.

4.1 Alternative protocols
There are several interconnection technologies, which are

more widely adopted for creating high-speed interconnection
networks than PCIe. These include InfiniBand, as well as
10Gb Ethernet. They may achieve the same throughput on
interconnection links, but they are not integrated as closely
with the system fabric as PCIe, and require soft-processing
of protocol stacks. Their latency is therefore, inevitably,
higher than that of PCIe interconnects.

4.2 Multi-Root IO Virtualization
Multi-Root IO Virtualization (MR-IOV) [18] specifies how

several hosts can be connected to the same PCIe fabric. The
fabric is logically partitioned into separate virtual hierar-
chies, where each host sees its own hierarchy without know-
ing about MR-IOV. MR-IOV require multi-root aware PCIe
switches, and, in the same way as SR-IOVs require SR-IOV-
aware devices to provide functions to several VMs, devices
must be multi-root aware to provide functions to several vir-
tual hierarchies (and thus hosts) at the same time.

Despite being standardized in 2008 [18], we are not aware
of any MR-IOV-capable devices and very few switches. In-
stead, there are attempts to achieve MR-IOV-like function-
ality through a combination of SR-IOV with NTB-like hard-
ware [27].

4.3 Ladon and Marlin
Our Device Lending idea is apparently timely, because

very similar functionality was proposed in Cheng-Chun Tu
et al. in the form of the Ladon [29] and Marlin [30] systems.

Ladon uses all PCIe and virtualization features as pro-
posed in this paper, but it achieves less freedom than our
Device Lending. In Ladon, PCIe devices that are offered
for sharing are all managed by a dedicated computer, the
management host. The only task of the management host

is to manage sharing of the devices. The guest OSes that
include these devices into their PCIe fabric are, first, all
running in VMs, and second, they include the remote PCIe
devices in their fabric for the entire lifetime of the OS. With
our Device Lending, we can actually pool the resources of
a small cluster of NTB-connected devices by lending in ar-
bitrary direction. We can even exchange devices, and do
this under the control of a running OS, not a dedicated ma-
chine. By combining PCIe hot-plug support in the OS with
use of the NTB, we can insert remote PCIe devices while
the OS is running. Finally, for devices whose native device
drivers support hot-remove, we can stop borrowing without
rebooting.

Marlin [30] can share network IO capacity in a cluster by
forwarding Ethernet packets underneath the host’s TCP/IP
stack to another node, using an Ethernet-over-PCIe driver
for legacy software and a dedicated stack for zero-copy mode.
While this replicates Dolphin Interconnect Solutions’ (Dol-
phin) SuperSocket approach [12], which is a continuation
of SuperSockets for SCI [25], the technique appears generic
for all interconnection technologies. With Device Lending,
however, we borrow the network card from the remote host
and require neither driver nor encapsulation overhead.

5. IMPLEMENTATION
We have implemented Device Lending for an unmodified

Linux kernel, using an NTB and the IOMMU. The imple-
mentation is composed of two parts, the lending side and the
borrowing side. For our proof-of-concept implementation,
we rely on a NTB implementation from Dolphin, namely
the PXH810 host adapter [2].

The lending side kernel module binds itself as a driver for
the targeted PCIe devices. This provides us with exclusive
access to the device, allowing the kernel module to access the
device’s configuration space while preventing other drivers
on the host from interfering. The kernel module then notifies
the borrowing side of all available devices.

When the user requests an available device, the borrowing
side kernel module communicates with the lending side ker-
nel module in order to read the device’s configuration space.
The lending side sets the targeted device into a per-borrower
IOMMU domain, isolating the device from the rest of the
system and other devices. The borrowing side then sets up
the necessary MMIO mappings using the NTB and tells the
lending side to set up the reverse mappings for device to
RAM DMA as well as MSI mappings. Following this, the
borrowing side then injects the device into the Linux PCI
subsystem and signals a hot-add event. Linux will probe the
device, set it up and load the device driver.

The device driver is now able to communicate with the
device using MMIO access. Whenever the device driver
sets up new DMA mappings using the Linux DMA-API,
the borrowing side kernel module intercepts these calls and
dynamically sets up and tear down the necessary IOMMU
mappings. This allows the borrowing side device driver to
transfer data to the remote device with no additional soft-
ware overhead.

6. EVALUATION AND DISCUSSION
As the global address space feature of PCIe is unique, and

since, to the best of our knowledge, no MR-IOV implemen-
tations exist, our Device Lending concept has few relevant

4,513 4,568
4,807

2,811 2,939 3,046

0

1

2

3

4

5

6

1 MB 4 MB 10 MB 1 MB 4 MB 10 MB

Local RAM to Remote RAM (write) Local RAM from Remote RAM (read)

G
ig

ab
yt

es
 p

er
 s

ec
on

d

(a) RAM to RAM

2,393 2,348 2,396
2,987 2,913 3,021

4,414 4,464
4,859

1,905 1,853 1,88

0

1

2

3

4

5

6

1 MB 4 MB 10 MB 1 MB 4 MB 10 MB 1 MB 4 MB 10 MB 1 MB 4 MB 10 MB

Local GPU to Remote
RAM (write)

Local GPU from
Remote RAM (read)

Local RAM to Remote
GPU (write)

Local RAM from
Remote GPU (read)

G
ig

ab
yt

es
 p

er
 s

ec
on

d

(b) RAM to GPU

Figure 4: DMA transfer bandwidth across the NTB with different transfer sizes. The DMA engine on the NTB is used.

comparisons. Alternative solutions either require extensive
virtualization support or additional protocol stacks. In order
to evaluate our proof-of-concept implementation, we there-
fore evaluate the performance compared to what is possible
to achieve with specialized use of the NTB. To establish a
point of reference, we measured RAM to RAM bandwidth
as this shows the maximum possible transfer rate.

We configured two test machines, shown in Figure 5. Both
machines have a single Nvidia Tesla K40 directly connected
to the root complex each. The machines were connected
together using two x8 Gen3 Dolphin PXH810 adapter cards
and an external PCIe cable. In all our tests, Machine A was
used to initiate transfers.

6.1 Reference evaluation
For our RAM to RAM reference, we transferred data be-

tween the two machines over the NTB and measured the
bandwidth without Device Lending (Figure 4). Here, we
used Dolphin’s SISCI API for programming the DMA engine
on the NTB itself [3, 16]. All PCIe endpoints in our setup
are connected directly to the root complex, which is why
transferring between remote RAM and local RAM shows
the optimal performance over the NTB (Figure 4a). RAM
to remote RAM latency is approximately 573 ns.

Write requests peak at around 4.8 GB/s on our test con-
figuration, shown on the left-hand side in Figure 4a. As
mentioned in Section 2.1.1, memory read requests are af-
fected by the distance in the PCIe hierarchy because they
are non-posted transactions. However, there are is an addi-
tional factor that also limit the performance of read oper-
ations. PCIe defines a maximum read request size. This is
configured by the system to ensure that the bandwidth is
shared among all the devices in the hierarchy. For our test
system, the maximum read request size is 512 bytes, and
the TLP maximum payload size is 128 bytes. The DMA
engine on the NTB handles 64 read requests in flight. As
seen in Figure 4a, read requests peak at around 3 GB/s on

Root Compex
Intel Xeon E5-2620 v2

CPU Cores
Memory

NTB
Dolphin PXH810

Root Compex
Intel Xeon E5-2620 v2

GPU
Tesla K40

CPU Cores
Memory

NTB
Dolphin PXH810

GPU
Tesla K40

External PCIe cable

Machine A Machine B

x16 x16 x8x8

x8

Figure 5: The setup used for our evaluation

our configuration.
Since the GPU is even further away than RAM, as illus-

trated in Figure 5, we see a considerably lower bandwidth
for RAM to remote GPU and GPU to remote RAM trans-
fers. Figure 4b shows the results of using the DMA engine
on the NTB. The two scenarios on the left-hand side show
using a local GPU on Machine A and RAM on Machine B.
The two other scenarios on the right-hand side show the
opposite, using local RAM on Machine A and the remote
GPU on Machine B. It is important to note that when using
a local GPU, the DMA engine on the NTB first has to per-
form read requests to the GPU before it is able to push it
to the remote side using write requests. In other words, it is
a two-part operation. It is interesting to note that reading
from a local GPU and pushing it to remote RAM (Figure 4b,
second from left) is is similar to reading from remote RAM
(Figure 4a, on the right). This indicates that the latency
added by the NTB is around the same as having to route
TLPs through the root complex.

6.2 Device Lending evaluation
One of the novel properties of Device Lending is that it

can be achieved with no modifications to endpoint devices
or device drivers or even user-space software. We there-
fore wanted to use an already existing benchmarking tool.
A well-known tool in the CUDA developer community, is
the bandwidthTest [15] utility. This tool is included in the
CUDA Toolkit samples. In default mode of operation, this
program allocates page-locked buffers in RAM and measures
the bandwidth it achieves when copying to the GPU and vice
versa using the GPUs onboard DMA engine. We argue that
making one of the most complex proprietary GPU drivers
on the market work with our implementation serves as good
test for our proof-of-concept.

In our setup, Machine B was configured to lend its Tesla
K40 GPU to Machine A, making it available for the OS and
driver on the remote machine. Figure 6 shows the results
of running bandwidthTest on the remote Tesla K40 using
different transfer sizes. The left side shows the results of
making the onboard DMA engine write to remote RAM on
Machine B (around 4.9 GB/s), while on the right we see
the results of making the onboard DMA engine read data
from remote RAM (around 2 GB/s). These numbers are
comparable to the numbers seen in Figure 4b, as they show
a similar scenario. However, as they use different DMA en-
gines, they also have different locality to the data.

Using the onboard DMA engine to write to remote RAM
is close to the speeds for local RAM to remote RAM trans-

0,17
0,65

4,89 4,97 4,85

0,11
0,39

2,02 2,07 2,06

0

1

2

3

4

5

6

1 KB 4 KB 1 MB 4 MB 10 MB 1 KB 4 KB 1 MB 4 MB 10 MB

GPU memory to RAM (write) GPU memory from RAM (read)

G
ig

ab
yt

es
 p

er
 s

ec
on

d

Figure 6: bandwidthTest running on a borrowed GPU. The
DMA engine on the GPU is used to transfer.

fers (around 4.9 GB/s). Reading from remote RAM and
pulling it to GPU memory (around 2 GB/s) is a bit slower
than reading from remote RAM and writing it to local RAM
(around 3 GB/s). This is caused by the onboard DMA en-
gine on Machine A’s GPU being even further away from
the remote RAM on Machine B than the DMA engine on
Machine A’s NTB.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented the Device Lending concept,

which allows a cluster of PCIe-connected computers to es-
tablish a pool of PCIe devices. These devices can subse-
quently be time-shared in a process of lending and borrow-
ing. Since these devices appear like hot-plugged local devices
to the borrowing OS, even the host OS can use them with
their native drivers. For all native device drivers that sup-
port hot-plugging, these borrowed devices can be returned
without rebooting. Having built the infrastructure for this,
we demonstrated its performance in this paper, and provide
hints for the best possible use of borrowed devices.

In further work, we will investigate concurrency challenges
when multiple devices are borrowed and situations where the
lender needs to take the device back forcefully. We are also
planning to implement a framework for managing Device
Lending. In addition, we are investigating the possibility
for lending separate functions of SR-IOV devices in order to
implement MR-IOV without needing specialised hardware.

Acknowledgments
This work has been performed mainly in the context of the BIA
project PCIe (#235530) funded by the Research Council of Nor-
way (RCN), with contributions from EONS (RCN #231687) and
POPART (EU H2020 #644874). The authors also acknowledge
Magma for providing Nvidia Tesla GPUs.

8. REFERENCES
[1] K. Alnæs, E. H. Kristiansen, D. B. Gustavson, and D. V.

James. Scalable coherent interface. In Proc. of CompEuro,
pages 446–453, 1990.

[2] Dolphin Interconnect Solutions. PXH810 Gen3 PCI
Express NTB Host Adapter.

[3] Dolphin Interconnect Solutions. SISCI API.

[4] J. Duato, A. Pena, F. Silla, R. Mayo, and
E. Quintana-Ort́ı. rCUDA: Reducing the number of
GPU-based accelerators in high performance clusters. In
Proc. of HPCS, pages 224–231, 2010.

[5] T. Fountain, A. McCarthy, and F. Peng. PCI express: An
overview of PCI express, cabled PCI express and PXI
express. In Proc. of ICALEPCS, 2005.

[6] S. Ghandeharizadeh, R. Zimmermann, W. Shi, R. Rejaie,
D. Ierardi, and T.-W. Li. Mitra: A scalable continuous
media server. Springer Multimedia Tools and Applications,
5(1):79–108, 1997.

[7] R. S. Grover, Q. Li, and H.-P. Dommel. Performance study
of data layout schemes for a SAN-based video server.
Parallel Computing, 34(12):747–756, 2008.

[8] J. P. Hayes, T. N. Mudge, Q. F. Stout, S. Colley, and
J. Palmer. Architecture of a hypercube supercomputer. In
Proc. of ICPP, pages 653–660, 1986.

[9] Intel Corporation. Intel Virtualization Technology for
Directed I/O, 2014.

[10] T. Jones, A. Koniges, and R. Yates. Performance of the
IBM general parallel file system. In Proc. of IPDPS, pages
673–681, 2000.

[11] V. Krishnan. Evaluation of an Integrated PCI Express IO
Expansion and Clustering Fabric. In Proc. of HOTI, pages
93–100, 2008.

[12] V. Krishnan, T. Comins, R. Stalzer, and D. Wong. A case
study in I/O disaggregation using PCI express advanced
switching interconnect (ASI). In Proc. of HOTI, pages
15–24, 2006.

[13] L. B. Kristiansen. PCIe Device Lending: Using
Non-Transparent Bridges to Share Devices. Master’s thesis,
University of Oslo, 2015.

[14] G. Kroah-Hartman. How the PCI hot plug driver filesystem
works. The Linux Journal, 97(2), May 2002.

[15] NVIDIA Corporation. CUDA Toolkit Documentation 7.5,
2015.

[16] NVIDIA Corporation. GPUDirect Technology Overview,
2015.

[17] PCI-SIG. PCI Local Bus Specification, 2002.

[18] PCI-SIG. Multi-root I/O Virtualization and Sharing
Specification, 2008.

[19] PCI-SIG. PCI Express 3.1 Base Specification, 2010.

[20] PCI-SIG. Single-root I/O Virtualization and Sharing
Specification, 2010.

[21] K. Pogorelov, M. Riegler, J. Markussen, M. Lux, H. K.
Stensland, T. Lange, C. Griwodz, P. Halvorsen,
D. Johansen, P. T Schmidt, and S. L. Eskeland. Efficient
processing of videos in a multi auditory environment using
Device Lending of GPUs. In In Proc. of MMSys. ACM,
2016.

[22] M. Ravindran. Extending Cabled PCI Express to Connect
Devices with Independent PCI Domains. In Proc. of IEEE
Systems Conference, pages 1–7, 2008.

[23] J. Regula. Using Non-transparent Bridging in PCI Express
Systems. PLX Technology, Inc, 2004.

[24] K. Saito, K. Anai, K. Igarashi, T. Nishikawa, R. Himeno,
and K. Yoguchi. ATM bus system. US 5,796,741 A, 1998.
US patent.

[25] F. Seifert and H. Kohmann. SCI SOCKET - a fast socket
implementation over SCI. 2006.

[26] M. J. Sullivan. Intel Xeon Processor C5500/C3500 Series
Non-Transparent Bridge. Technical report, 2010.

[27] J. Suzuki, Y. Hidaka, J. Higuchi, T. Baba, N. Kami, and
T. Yoshikawa. Multi-root Share of Single-Root I/O
Virtualization (SR-IOV) Compliant PCI Express Device. In
Proc. of HOTI, pages 25–31, 2010.

[28] W. Tetzlaff, M. Kienzle, and D. Sitaram. A methodology
for evaluating storage systems in distributed and
hierarchical video servers. In Compcon Spring, Digest of
Papers., pages 430–439, 1994.

[29] C.-C. Tu, C.-t. Lee, and T.-c. Chiueh. Secure I/O device
sharing among virtual machines on multiple hosts.
SIGARCH Comp. Arch. News, 41(3):108–119, 2013.

[30] C.-C. Tu, C.-t. Lee, and T.-c. Chiueh. Marlin: A
memory-based rack area network. In Proc. of ANCS, pages
125–136, 2014.

